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The three-colouring problem as a special eight-vertex model 

T T Truong and K D Schotte 
Institut fur Theoretische Physik, Freie Universitat Berlin, Arnimallee 14, D-1000 Berlin 
33, West Germany 

Received 23 July 1985 

Abstract. The equations giving the free energy per site and those governing the Bethe 
ansatz wavefunctions for a ‘solid-on-solid’ ( S O S )  model equivalent to the eight-vertex model 
are shown to be identical to those arising in the three-colouring problem for the particular 
choice of parameters 7 = - f i K ’ ,  U = 0. using the original Baxter notation. 

In the last twenty years considerable progress in two-dimensional statistical mechanics 
has been achieved through the exact solutions of many models, notably the six-vertex 
model (Lieb 1967) and various variants: the eight-vertex model (Baxter 1972a, 1973), 
the triangular three-spin model (Baxter and Wu 1974), the generalised hard-hexagon 
model (Baxter 1980) and recently its extension as a general SOS model (Andrews et al 
1984). It is remarkable that the Ising model (Onsager 1944) and various free-fermion 
models (Fan and Wu 1968) as well as the previously mentioned models turn out to 
be special cases of the versatile eight-vertex model (Baxter and Enting 1976, Baxter 
1982, Andrews et a1 1984). 

However, the three-colouring of the square lattice problem, although solved long 
ago (Baxter 1970), has not been connected to the eight-vertex model. Perhaps such a 
connection may be already known to Baxter who has solved both models, but as far 
as we know it has not appeared in the literature. It is the purpose of this paper to 
provide the technical details leading to the identification of the two models. 

We proceed basically by choosing special values for the original parameters used 
by Baxter and show that the equations governing the Bethe ansatz eigenfunctions of 
the transfer matrix (Baxter 1973) are precisely those of the colouring problem of the 
square lattice with three colours as expounded in 0 8.13 of Baxter (1982). 

Let us first recall the definition of the eight-vertex model. We consider a square 
lattice with toroidal boundary conditions with an arrow covering of the bonds such 
that round a given site there can be only one of the eight possible configurations listed 
in figure 1 with their respective statistical weights: 

(1) a :  b: c: d = sn(u+ 7): sn(u - 7) : sn(27):  k sn(27)  sn(u+ 7) sn(u - 7) 

n a b b c c d d 

Figure 1. The eight arrow configurations allowed at a vertex. 
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where sn(x) is the Jacobian elliptic sine function of modulus k, 0 < k < 1. The free 
energy per site of an infinite lattice can be calculated exactly, for example by solving 
an integral equation often arising in integrable systems (see e.g. equation (4.13) of 
Johnson et a1 19731 as 

I i I - 1  I I I I.1 I I i * 1  i ] I + ,  

I - 1  I * 1  I I - 1  I I ; : 1 - I r  
--- I - ----- 

1 
I-1 I I 

I I 

OC sinh(r-h)m sinh(A - a ) m  
f sv (a ,h ,  k ) = q ( A - a - i r ) -  

m = l  m sinh m r  cosh mh 

where, Kk and K ;  being the complete elliptic integrals of moduli k and k' = (1 - k2)"2, 

a = - i r (  v /  K k )  h = -iT( 771 Kk) and 5' = T( K ;/2&). (3) 

Now making the choices 

77 =f iK; ,  v = o  (4) 

the free energy f s v  now takes the form: 

as ( - 1) rm 
m = l  m(1- r m  - rZ")(l - r Z m )  

f8v(0,$r ,  k ) = ( f r - ; i r ) -  1 

with r=exp(-$7).  However, this is precisely the free energy of the three-colouring 
problem as given by equation (8.13.83) of Baxter (1982, hereafter called I)  provided 
one relates the parameter r to the product of the three activities of the colours by 

i exp(3.r) = z,zzz3. ( 6 )  

Moreover since the critical regime of the eight-vertex model is described by the 
parameter CL = r A / r  (Baxter 1972a), we have here CL = ir leading to a critical index 
a = 5, identical to that of the three-colouring problem?. 

Before we go on with the proof, we should set the notation straight by relabelling 
the parameters 77 and k of 0 8.13 of I by 7 7 3 c ,  k3c to distinguish them from those of 
the eight-vertex model. Also whenever Jacobian theta functions appear they shall be 
written as in Baxter (1972, hereafter called 11), i.e. HJb, OJbr etc.  . , . 

In 11, it has been shown that the eight-vertex problem is equivalent to a covering 
of the plaquettes of the original square lattice by 'heights' 1 such that round a site 
there can be only one of the six height configurations depicted by figure 2. The 
corresponding statistical weights, with a global normalisation factor p' ,  are expressed 

GI 4 bi bi c1 c ;  

Figure 2. The six height configurations allowed at a vertex. 

t This fact presumes already that the three-colouring problem is in fact a special eight-vertex model, and 
this is what will now be shown explicitly. 
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b j = p ’ h ( u  - 7) = b’ c ; = p f h ( 2 ~ ) h (  w I -  77 +U). (7) h( W I + l )  

h (Wf)  
a ;  = p’h(u+  7) - 

This new notation is explained as follows: 

w [ =  w+217/ and w = arbitrary constant. 

The local height 1 varies from 1 to L, which is determined by 

L77 = 2m,  Kk + im2 K L, (8) 

The elliptic function h ( u )  is given in terms of Jacobian theta functions by 

h( U )  = HJb( u)@Jb( U )  exp ( i ~ 2;;;77 ( U 2 +  K 3 ) .  (9) 

Thus h ( u )  is an entire function, odd and periodic of period 2L77, with the property, 
for m ,  = O  and m 2 =  1: 

h ( U + L v )  = - h( U )  (10) 

(easily checked using the pseudo-periodicity of HJb and @Jb under a shift iK; of the 
argument). 

Since the arrangements of heights of figure 2 again obey the ice rule, it is natural 
to look for eigenfunctions of the transfer matrix: the Bethe ansatz wavefunctions. To 
keep the discussion as simple as possible we concentrate on the ‘two-down’ arrows 
(or particles) as given by (2 .5)  of 11. Besides, if complete understanding of free theories 
are given by the one-particle structure, complete understanding of soluble systems by 
the Bethe ansatz is provided by the two-particle structure, as is well known. 

The ‘evolution’ of two particles ‘,s described by figures 3 ( a )  and ( b ) .  If we denote 
the two-particle wavefunction by f( I I x,, x2) then it obeys the ‘integral’ equation, 

Y !  Y2 

1 x1 x2 N 

ib 1 

Figure 3. Graphical representations of the matrix elements fi,(ljX, Y )  and d,(llX, Y )  
for two ‘particles’ or vertical lines separating consecutive decreasing heights on a row. 
Only heights to the left of the ‘particles’ are represented. 
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corresponding to N sites on a row 

Y l  = xlYz= x2 I 

The notation used in ( 1 1 )  is the following. 
(i) The summation I;* excludes the cases y, = x1 = y 2  and y ,  = x2 = y,. 
(ii) As, is the two-particle eigenvalue of the transfer matrix. 
(iii) fi, and fiR are matrix elements of the transfer matrix of an inhomogeneous 

six-vertex system with 'reduced' weights GI = gl= Cr = E;  = 1 and a': = p i ,  gI = qr, 
f i d I  I x, Y) = U ( /  + 11 0, y1, X I )  U ( l  - 11 X I ,  Yz,  x2) 
fiR(llx, y) = U(l-1Ix1, yl, x2) U ( l - 3  1x2, y2, N + 1 )  

where the function U (  I I x, y, x') is defined for x < x' ,  x s y s x ' ,  as 
for x = y 
for x < y  < x' 
for y = x' 

and 

(12c) 

These are equations (2.8), (2.9), (4.11), (4.12) and (4.13) of 11. Now takingf(lIx,, x2) 
as a Bethe ansatz wavefunction, where a summation on all permutations P of the 
one-particle parameters is performed 

h 2 ( 2 7 ) ) h ( w , - l - 7 ) + u ) h ( y - ,  + o - u )  

h ( u +  7 ) ) h ( u  - 7 ) ) h ( % 2 ) ~ ( W I )  . 
rr = 

m x , ,  x2) =c A(P)g'P,(l, x l ) g ' P z ( I - 2 ,  x2) (13 )  
P 

with the one-particle wavefunction, depending on a parameter uj, j = 1,2:  

whose momentum is given by 

h ( u + 7 ) )  h ( U + V + U , )  
h ( u -  7)) h ( u -  7 ) + U j ) '  

exp(ik:) =- 

One then finds a superposition amplitude 
A ( P ) = E ( P )  fl h(u,-u,+277) 

j < m  

and the eigenvalue 

(see equations (3.1), (4.29), (4.22), (4.26), (5.5)  and (4.34) in 11). The generalisation to 
n particles is a standard procedure. 
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We now particularise our choice of parameters given by (4) which implies that 
L = 3 (because m1 = 0 and m2 = 1). Now using (10) we obtain - -  a remarkable simplification 
for our equations since now pI =, qr = 1 (or a’/ = a’; = bf = b{ = El = E{ = 1 defines an ice 
model) and consequently d, = DR = 1. Thus (1 l),  (with N even) for the two-particle 
amplitude, has effectively the form of the two-particle amplitude obtained in the 
three-colouring problem (see equation (8.13.11) of I )  when we make the following 
identifications. 

(i) The colour a is related to the height 1 (modulo 3) by 

l = u + l .  (18) 

(ii) The one-particle wavefunction of the j th  particle becomes 

with e x p ( i k j ) = h ( v + u j ) / h ( T - u j ) .  Since 1 - 2 j + 2 = u + j  (mod3) the eigenvalues Asv 
and A,, as well as the weights rf and l ( u )  = z,z,+,/(zlz2z3)N’3 of the eight-vertex 
model and the three-colouring problem are connected by 

A8., = and r [ - z j + 2 + x ,  = 5 ( x j  + j  + a)* (20) 

We can now relate it to the one-particle wavefunction of the three-colouring problem 
(equation (8.13.13) of I):  4 ( x i + j + a )  by 

$ ( I  - 2j  + 2, x j )  = exp[-ikl(a+ j ) ] 4 ( x j  + j  + a )  (21) 

where now 

h(WX?+,+,) h(wx,+,+, - U,) 
h ( %,+,+U + 2 77 1 h ( W,,+,+, - 7 ) 

4( X, + j  + a )  = exp[i k, (x, + j  + a ) ]  

has precisely the Bloch wavefunction form and the pseudo-periodicity 

4 ( x j +  3) = exp(i3k,)$(xj) (23) 

due to the property of (10). 
Putting the expression (21) back into (13), appropriately generalised to n particles 

(as in (31) of 11)) we see that we obtain the coupling coefficient of the n particle in 
the three-colouring problem (see equation (8.13.13) of I )  

A’(P)=A(P)exp(- ik-2ik- .  . . -nik)  (24) 

provided exp(-icT Zy=l k,) = 1, which is the case in the ground state of the eight-vertex 
model (Johnson et a1 1973). 

To complete the identification of the two models we should also look at the 
two-particle phase shift due to scattering. Starting from the eight-vertex expression, 
now rewritten in terms of Jacobian theta functions 
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Table 1. Special values of 7 characterising various soluble models. 

Hard hexagons 
General SOS 

1 0 10 
1 0 2r 

king $K' t H  0 1 4 
Three-colouring f i K '  $ H  0 1 3 
Triangular three-spin $iK' t r r  0 3 8 

Now recall that the elliptic integrals and moduli used in the three-colouring problem 
are I (  k3c)  and Z'( k3c);  however, they are connected to those of the eight-vertex by a 
Landen transformation because (see equation (8.13.77) of I and (3)), namely 

T =  r(KL/2Kk) = r(Z'(k3c)/I(k3c)). (26) 

Thus, according to appendix B of Johnson et al (1973) we can identify 

hJ, ( U, k )  = constant x HJb (a, k3J 
with a rescaling of the argument 

= (2Kk/z(k3c))a 

and the coupling constant 

2 7  = 73c(2Kk/I(k3c)). (28) 

This ultimately leads to the phase shift of equations (8.13.36) and (8.13.73a, b) obtained 
in the three-colouring problem by Baxter. 

We close by giving a table illustrating the connections of various soluble models 
to the eight-vertex models showing the outstanding role of the integer L, with respect 
to the parameter 7 of Baxter. We note that (Baxter and Wu 1973) the triangular 
three-spin model can be treated also as a colouring problem of the triangular lattice. 
A final remark concerns the associated X Y Z  chain (Baxter 1972b) 

XxYz = ( J,a;a~+l + J , a f ~ f + ~  + J,afa:+,,) -constant 
I 

which has a threefold symmetry because there is a relation 

J, Jy  + Jy J ,  + J,  J, = 0 (30) 

defining a cone passing through the origin. Baxter has studied the part ( J ,  + Jy + J,) > 0 
associated with p = f r .  We now see that the part ( J ,  + Jy + J,) < 0 associated with 
p = fr is related to the three-colouring problem. Perhaps this threefold symmetry 
might be the origin of a self-triality of the X Y Z  chain as conjectured before (Shankar 
1981). 
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